List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Coulomb's law constant $k = 1/4\pi\varepsilon_0$

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{ kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F m}^{-1}$

Planck constant $h = 6.63 \times 10^{-34} \text{ J s}$

Proton mass $m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \text{ m s}^{-1}$

Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion $s = \frac{(u+v)t}{2}$

v = u + at

 $s = ut + \frac{1}{2}at^2$

 $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

 $g = \frac{F}{m}$

W = mg

Momentum p = mv

Moment of force moment = Fx

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2} m v^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Power $P = \frac{E}{t}$

 $P = \frac{W}{t}$

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

Materials

Stokes' law
$$F = 6\pi \eta rv$$

Hooke's law
$$\Delta F = k\Delta x$$

Elastic strain energy
$$\Delta E_{\rm el} = \frac{1}{2} F \Delta x$$

Young modulus
$$E = \frac{\sigma}{\varepsilon}$$
 where

Stress
$$\sigma = \frac{F}{A}$$

 $\rho = \frac{m}{V}$

Strain
$$\varepsilon = \frac{\Delta x}{x}$$

Unit 2

Waves

Wave speed	$v = f\lambda$
Speed of a transverse wave on a string	$v = \sqrt{\frac{T}{\mu}}$
Intensity of radiation	$I = \frac{P}{A}$
Refractive index	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
	$n=\frac{c}{a}$

Critical angle
$$\sin C = \frac{1}{n}$$

Diffraction grating
$$n\lambda = d\sin\theta$$

Electricity

Potential difference
$$V = \frac{W}{Q}$$

Resistance $R = \frac{V}{I}$

Electrical power, energy $P = VI$
 $P = I^2R$
 $P = \frac{V^2}{R}$
 $P = VIt$

Resistivity $R = \frac{\rho l}{A}$

Current
$$I = \frac{\Delta Q}{\Delta t}$$

$$I = nqvA$$
 Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Particle nature of light

Photon model
$$E = hf$$

Einstein's photoelectric equation $hf = \emptyset + \frac{1}{2}mv_{\max}^2$

de Broglie wavelength $\lambda = \frac{h}{p}$

Unit 4

Further mechanics

Impulse

 $F\Delta t = \Delta p$

Kinetic energy of a

non-relativistic particle

 $E_{k} = \frac{p^2}{2m}$

Motion in a circle

 $v = \omega r$

$$T = \frac{2\pi}{\omega}$$

$$a = \frac{v^2}{r}$$

$$a = r\omega^2$$

Centripetal force

$$F = ma = \frac{mv^2}{r}$$

$$F = mr\omega^2$$

Electric and magnetic fields

Electric field

$$E = \frac{F}{Q}$$

Coulomb's law

$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{V}{d}$$

Electrical potential

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

Capacitance

$$C = \frac{Q}{V}$$

Energy stored in capacitor

$$W = \frac{1}{2}QV$$

$$W = \frac{1}{2}CV^2$$

$$W = \frac{1}{2} \frac{Q^2}{C}$$

Capacitor discharge

$$Q = Q_0 e^{-t/RC}$$

$$I = I_0 \mathrm{e}^{-t/RC}$$

$$V = V_0 e^{-t/RC}$$

$$\ln Q = \ln Q_0 - \frac{t}{RC}$$

$$\ln I = \ln I_0 - \frac{t}{RC}$$

$$\ln V = \ln V_0 - \frac{t}{RC}$$

In a magnetic field

$$F = Bqv \sin \theta$$

$$F = BIl \sin \theta$$

Faraday's and Lenz's laws

$$\mathcal{E} = \frac{-\mathrm{d}(N\phi)}{\mathrm{d}t}$$

Nuclear and particle physics

In a magnetic field

$$r = \frac{p}{BQ}$$

Mass-energy

$$\Delta E = c^2 \Delta m$$

Unit 5

Thermodynamics

Heating
$$\Delta E = mc\Delta\theta$$

$$\Delta E = L\Delta m$$

Ideal gas equation
$$pV = NkT$$

Molecular kinetic theory
$$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$$

Nuclear decay

Mass-energy
$$\Delta E = c^2 \Delta m$$

Radioactive decay
$$A = \lambda N$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$N = N_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

Oscillations

Simple harmonic motion
$$F = -kx$$

$$a = -\omega^2 x$$

$$x = A \cos \omega t$$

$$v = -A\omega \sin \omega t$$

$$a = -A\omega^2 \cos \omega t$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

Simple harmonic oscillator
$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Astrophysics and cosmology

Gravitational field strength
$$g = \frac{F}{m}$$

Gravitational force
$$F = \frac{Gm_1m_2}{r^2}$$

Gravitational field
$$g = \frac{Gm}{r^2}$$

Gravitational potential
$$V_{\text{grav}} = \frac{-Gm}{r}$$

Stefan-Boltzmann law
$$L = \sigma A T^4$$

Wien's law
$$\lambda_{\text{max}}T = 2.898 \times 10^{-3} \,\text{m K}$$

Intensity of radiation
$$I = \frac{L}{4\pi d^2}$$

Redshift of electromagnetic
$$z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$$
 radiation

Cosmological expansion
$$v = H_0 d$$